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Abstract. Overdriven shock waves propagating in main crystallographic directions of single-crystal bcc iron were studied with
moving-window molecular dynamics (MD) technique. To simulate correctly the shock-induced bcc-to-hcp phase transition in iron
a new EAM potential fitted to the cold pressure curves and pressure transition at 13 GPa was developed with the stress matching
method. We demonstrate that structure of shock fronts depends on orientation of crystal. A peculiar structure of steady shock-wave
front in [100] direction is observed. While the ultra-fast α→ ε transition initiated in uniaxially compressed crystal along [100] in
elastic zone transforms bcc completely to hcp phase, transformation in other directions is performed only partially with production
of metastable composition of nanometer-sized bcc-hcp-fcc grains.

INTRODUCTION

Fast growth of available number of processors in computational clusters during last decade made feasible atomistic
molecular dynamics (MD) simulation of micrometer-sized samples, which approaches a spatial scale in experiments
with laser-induced generation of shock wave (SW) in films having thickness of few micrometers. Thus, planning
and analysis of experiments in shock-wave physics can be performed directly with MD simulation. Nowadays the
various shock-induced phenomena, including elastic-plastic transformation and phase transitions in material under
very high-rate deformation, can be studied in detail on atomistic scale during several nanoseconds [1–10].

The success of MD simulation of high-strain-rate phenomena strongly depends on the availability of reliable
interatomic potentials that are capable of describing the materials response to an extreme stress gradient of 1 GPa/nm
within a shock front, as well as the following shock-induced transformation and relaxation of material in after-shock
flow. Reliable MD simulation of polymorphic solid-solid phase transition in iron is of particular interest because such
transition is found to be sensitive to duration of loading in laser-induced SW studied in recent experiments [11–13].

In this short report we present a newly developed EAM potential using the stress-matching method [6]. In addi-
tion to cold pressure curves the new potential is also specifically fitted to the pressure thresholds of bcc-to-hcp and
bcc-to-fcc phase transitions in iron, that distinguishes it from almost all other Fe potentials reviewed and compared
extensively in [14]. Using the new potential we study structures of overdriven steady SW in perfect iron crystals
with the help of moving window (MW-MD) technique [8, 15]. Structure of ultra-short shock waves in iron studied in
experimental research and MD simulation of iron response to femtosecond laser irradiation is discussed in [12].

DEVELOPMENT of EAM POTENTIAL for IRON

There are two well-known methods for development of new interatomic potentials using energy-matching [19–22]
or force-matching [23] fitting of potential coefficients, respectively. For energy-matching method the fitting database
of ab initio calculated energies is built for a large set of atomic configurations. Similarly, a database of ab initio
calculated forces is used in force-matching method. A mixed method using a combined energy-force database can
be also employed. The root problem of such methods lies in the fact that the chosen atomic configurations are not
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TABLE 1. Experimental and ab initio properties of iron in comparison with calcu-
lated ones using a newly-developed EAM potential.

Experiment or DFT Present EAM

Lattice constant a0 (nm) 0.2858 0.28574
Lattice constant aT=293 (nm) 0.286653 0.286653
Cohesion energy E0 (kJ/mol) 416.43 420.78
Bulk modulus B0 (GPa) 177.7 177.8
Elastic constant c11 (GPa) 243. 243.4
Elastic constant c12 (GPa) 145. 145.0
Elastic constant c44 (GPa) 116. 115.8
Vacancy formation Ev f (kJ/mol) 172.7 178.0
bcc-to-hcp, Pα→ε (GPa) 14.26 14.26
bcc-to-fcc, Pα→γ (GPa) 29. 29.0
Melting point Tm (K) 1811 1790

0.6 0.7 0.8 0.9 1
compression ratio V/V0

0

100

200

300

400

pr
es

su
re

 (G
Pa

)

hydrostatic
compression
scaled DFT bcc
shock Hugoniot
new Fe EAM bcc
new Fe EAM hcp
Mendelev EAM bcc

dP2/d2V < 0

V V

FIGURE 1. Cold pressure curves for hydrostatic compression (left) and stretching (right) of iron. DFT data for bcc lattice was not
used in fitting procedure above the α → ε transition at 14.26 GPa. The magenta circle shows an inflection point ∂2P0/∂V2 = 0,
beyond which the sound speed calculated by Mendelev EAM potential [16] drops with compression. Experimental points from
shock compression of iron are taken from the shock database [17]. Dashed curve shows pressure from the Rose semi-empirical
equation of state Rose [18].

connected by any continuous physical path on the phase diagram of material, like as isothermal or isochoric compres-
sion/stretching. Because of number of configurations is usually limited by a few thousands they are greatly separated
in multi-dimensional configuration space of multi-atom systems used for building the database. Then, even if an ob-
tained potential is fitted perfectly to the chosen atomic configurations it does not guarantee that a great number of other
configurations, which are realized in a continuous physical process but not included in the database, will be repro-
duced with acceptable accuracy. For such configurations the fitted potential may provide some undesired non-physical
response, for instance the increase of compressibility with higher compression of aluminum and nickel simulated by
Mishin EAM potentials [21].

Thus, those methods have a common issue in reproducing of cold stresses (along zero-temperature isotherm)
as reasonable and smooth functions of uniaxial strain applied to crystal lattice. This issue appears typically at some
specific deformations, where the stress may exhibit non-monotonic behavior leading to undesired non-physical effects
like to decrease of sound speed with compression or stress oscillation in stretching of crystal along some crystallo-
graphic axes as illustrated by blue lines on Fig. 1. The cold P(V) curve obtained by Mendelev EAM potential [16]
has an inflection point ∂2P0/∂V2 = 0 at pressure 120 GPa, after that the sound speed c0 = ∂P0/∂V = ∂2E0/∂V2

begins to decrease. Such physically unappropriate behavior reduces much the range of applicability of the potential,
which is often is ignored in MD simulation of material response to shock loading.

With the aim of developing a potential capable to reproduce correctly the response of iron crystal to deformation
in wide range of compression the stress-matching method [6] is used here. The fitting database is built of the stress
tensor components σαβ(V) = −Pαβ(V) calculated by DFT method in cold crystal lattice under continuous hydrostatic
and uniaxial deformations. Fitting procedure involves also the constrains of monotonic behavior of Pαα(V), including
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requirement of increase of sound speed with compression. Because for shock waves with pressure of up to a few
hundred GPa in condensed-phase materials the thermal energy and pressure are smaller than the cold energy and
pressure taken into account in the stress-matching fitting we can state with assurance that the fitted potential gives also
a reasonable thermodynamics of simulated material in a wide range of temperatures up to the critical point.
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FIGURE 2. Components of pressure tensor Pαβ(V/V0) for uniax-
ial compression of bcc iron along [111] direction. DFT data (sym-
bols) were calculated by VASP code. Solid line shows the compo-
nents obtained with our new EAM potential.

To obtain the first-principles cold pressure curves
of iron DFT calculations using the Vienna ab initio
simulation package (VASP) [24]. Electron wave func-
tions of crystal containing either one atom in bcc-
type cell or two atoms in hcp-type of cell were calcu-
lated with PAW psuedopotential [25, 26] with Perdew-
Burke-Ernzerhof (PBE) functional [27]. To describe
the polymorphic bcc-to-hcp phase transition the highly
accurate DFT calculations with energy cutoff 500 eV
and number of k-points 21 × 21 × 21 generated ac-
cording to the Monkhorst-Pack scheme for sampling
the Brillouin zone [28] were performed. The valence
band (3d74s1) and the closest occupied band 3p6 are
both considered as valence in the used PAW psuedopo-
tential chosen from VASP library.

To calculate the uniaxial pressure components, se-
ries of stepwise static calculations with relaxation of
atom positions were performed for normal strains along
the [100], [110], and [111] directions, respectively. The
equilibrium crystals at P = 0 were found to have size
a = 0.2830 nm of bcc-cell, and a = 0.247 nm and
c/a = 1.5805 nm for hcp-cell. Figures 1 and 2 present
the calculated cold pressures/stresses with symbols.
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FIGURE 3. Enthalpy of formation of hcp and fcc phase in respect
to bcc phase calculated by the new EAM potential. Thresholds of
phase transitions is satisfied exactly to the prescribed values be-
cause they have the highest priority in fitting procedure. The con-
strain Hf cc > Hhcp was applied up to 400 GPa.

Besides the cold pressures the experimental quan-
tities, including normal density, cohesive energy, elastic
constants, and energy of vacancy formation, were in-
cluded in the fitting database. The pressure thresholds
of 14.26 GPa for bcc-to-hcp phase transition in single-
crystal iron and 29 GPa for nonequilibrium bcc-to-fcc
phase transitions [14] were applied in fitting procedure.
The additional constrains, including increase of sound
speed with compression, and an inequality for enthalpy
of formation Hf cc > Hhcp prohibiting the hcp-to-fcc
transition, were used as illustrated by Fig. 3.

We use the high-order rational functions to repre-
sent the EAM potential consisting of a pairwise energy,
charge density and embedding energy. Fitting of po-
tential coefficients was performed by minimization of
target function with the use of downhill simplex algo-
rithm [29, 30] combined with random walk in multi-
dimensional space of fitting coefficients. Figures 1 and
2 show the cold pressure curves calculated by our new EAM potential. Average relative deviation of the calculated
pressure components from DFT data is about 9%. The range of applicability of the new potential is limited by com-
pression ratio of V/V0 = 0.5 and the maximal pressure of 800 GPa (high pressure range is not shown on Figures).

SIMULATION RESULTS

Predictive MD simulation of iron response to shock loading is our main goal in development of the new potential. To
verify the potential we calculate the principal shock Hugoniot of iron with the use of moving-window technique [8].
Figure 4 shows the calculated high-pressure Hugoniot for single crystal oriented in [110] direction and experimental
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data taken from the shock database [17]. In spite of incompleteness of bcc-to-hcp transition in after-shock motion
during several ten picoseconds available in the MW-MD box of 400 nm in length, see discussion of Fig. 6, there is a
good agreement between simulated Hugoniot and experimental one. However, the low-pressure Hugoniot for single-
crystal iron oriented along [100], where the bcc-to-hcp transition is completed as shown in Fig. 5, lies somewhat
higher than the experimental data for polycrystalline sample. This is mostly because the potential gives a slightly
higher cold pressure curve of ε− iron in the range of 30-50 GPa. In addition to shock-wave verification the calculated
melting point was also in good agreement with the experimental one, see other parameters in Table 1.

V V

FIGURE 4. Shock Hugoniot from MW-MD simulation of perfect
single-crystal iron described by our new EAM potential. Crosses
correspond to experimental points taken from the shock-wave
database [17].

To visualize solid and liquid phases of matter dur-
ing shock-wave simulation the physical parameters like
potential energy of atoms, as well as the atomic struc-
ture parameters, such as the central-symmetry param-
eter [31], can be used. However, the gap between po-
tential energies of atoms in solid phases and melt be-
comes narrow and drift toward higher potential energy
with increase of temperature in high-pressure SW. More-
over, the potential energy fluctuation increases much
with temperature. The same problem happens with the
central-symmetry parameter.

In our simulation the local-order parameters Q4

and Q6 introduced by Steinhardt [32, 33] was chosen
to probe an atom environment, because it is weakly de-
pendent on temperature and independent on density, and
can be calculated fast enough. The family of the angle
dependent functions Qlm for a given atom i with near-
est neighbors’ atoms j having radius vectors �ri j = �r j−�ri
can be evaluated as

Qlm(i) =
〈
Ylm(θ(�ri j), φ(�ri j))

〉
, Q2

l =
4π

2l + 1

l∑

m=−l

|Qlm|2, (1)

where Ylm are spherical harmonics, θ and φ are the angles of the radius vector (bond) �ri j measured with respect
to some reference coordinate system, and averaging is done among all nearest neighbors selected by Voronoi decom-
position. It is important to have a local-order parameter independent from coordinate system and its orientation, so
the rotational invariant of second order Ql shown as second part in Eq. 1. It was demonstrated that such rotational
invariants of ranks l = 4 and l = 6 can be used for analysis of local crystalline structures even in material at high
temperatures [34].

To detect the melting transition l = 6 is the most suitable rank, because Q6 has the largest gap between solid
and liquid states, and this gap almost does not depend on temperature. But, to distinguish crystalline structures at
higher temperatures, where atom distributions in plane Q4 and Q6 for particular lattices can overlap, we use atom
positions averaged over a short time about 1-2 ps instead of the usage of instantaneous positions in Eq. 1. Such
approach reduces much the thermal fluctuation in atom positions, which provides well localized nonoverlapping atom
distributions in plane Q4 − Q6, where bcc-like atomic structures are attracted to the coordinates Qbcc

4
= 0.03636965

and Qbcc
6
= 0.5106882 of the prefect bcc lattice, hcp structures – to Qhcp

4
= 0.09722222 and Qhcp

6
= 0.4847617, and

fcc structures are localized around Qf cc
4
= 0.1909407 and Qf cc

6
= 0.5745243.

We found that a steady shock in [100] crystallographic direction has a peculiar shock structure because the
uniaxial shock loading can easily trigger the α→ ε transition as shown on Fig. 5. To colorize Q4 − Q6 blue color is
used for bcc crystal, green for hcp, and red for fcc lattice. As it is seen, the α→ ε transition is initiated for very short
time of 3-4 ps within a leading elastic shock front where compression remains uniaxial in [100] direction and shear
stress is about 2 GPa. Under such deformation the (110) atomic planes of bcc crystal transform to 2D close-packed
geometry similar to that in hcp lattice. The cooperative shuffle, described in [4], of many those planes produced by the
shear stress results in formation of several small-sized pieces of hcp phase which later of after-shock flow transform
into two large domains as Fig. 5 illustrates. As a result of such fast and “perfect” phase transition the temperature
jumps by 90 K from 300 K in the uncompressed α− iron to 390 K in shocked ε− iron. The later formation of larger
domains is associated with relatively slow growth of temperature by 40 K within 50 nm after shock front. Increase of
transversal period of MD cell leads to increase of domain size but not the number of domains.
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FIGURE 5. Maps of shear stress and combined atomic order pa-
rameter Q4−Q6 together with component of pressure tensor Pxx ≡
−σxx and temperature profiles of SW moving with us = 5.2 km/s
in a single crystal iron oriented in x = [100], where x− axis is
a direction of shock-wave propagation. Blue color is used for bcc
crystal, green for hcp, and red corresponds to fcc crystal on Q4−Q6

map. α → ε transition is started just within the elastic nose where
the shear stress τ = (Pxx − (Pyy + Pzz)/2)/2 is about 2 GPa. Tem-
perature Tx of x− component of atom velocity distribution, which
is non-Maxwellian within a shock front, is shown by a red line.

By contrast with shock-wave propagation in
[100] direction, the structures of steady shock SW in
other directions do not exhibit the completed bcc-to-
hcp transition, mostly because the after-shock flow of
material is limited by about 250 nm in our MW-MD
box. Instead, a composition of nano-sized domains
of bcc, hcp and fcc phases is observed in our MD
simulations. Figure 6 shows a structure of a SW in
iron crystal oriented along [110] direction. Again the
phase transitions are initiated in the elastic zone/nose
with the shear stress of 7 GPa, but because [110]
uniaxial compression cannot generate closed-packed
atomic planes from (110) planes of bcc crystal the
shuffle mechanism of α → ε phase transition is not
activated here. Thus, a typical two-zone elastic-plastic
shock-wave structure is formed in other directions of
shock propagation. Uniaxially compressed iron in the
elastic nose is plastically transformed to a highly-
overcompressed bcc phase in the plastic front, which
immediately triggers transitions to hcp and fcc struc-
tures independently in many locations. We can see for-
mation of a metastable mixture of all three phases dis-
tributed in nanometer-sized grains shown on Fig. 6,
but fraction of fcc is the smallest one. Our prelimi-
nary simulations of SW in other directions indicate
that production of different phases depends much on
crystal orientation.
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FIGURE 6. Maps of shear stress and combined atomic order pa-
rameter Q4 −Q6 together with pressure tensor component Pxx and
temperature Tx profiles of SW moving with us = 6.25 km/s in a
single crystal iron oriented in x = [110]. Blue color is used for bcc
crystal, green for hcp, and red corresponds to fcc crystal on Q4−Q6

map. Metastable mixture of nano-sized domains of different phases
is formed in bcc-to-hcp and bcc-to-fcc phase transitions initiated af-
ter elastic nose with shear stress τ of about 7 GPa. Relaxation of
such mixture manifests itself as slow temperature growth in after-
shock flow. See other description details in caption to Fig. 5.

As seen such from Fig. 6 the phase composition
relaxes slowly in whole available MW-MD compu-
tation box, which results in gradual increase of tem-
perature in after-shock flow. It is worth noting that
in our MW-MD simulations a relatively low-pressure
SW with P < 60 GPa moving in [110] direction of
perfect iron crystal remains a pure elastic wave with-
out any phase transitions. Thus, the overcompressed
crystal can stay in a metastable bcc phase at least 100
ps after SW front within about 300 nm path of material
flow. Such behavior agrees with recent experimental
data obtained for ultra-short SW generated by a fem-
tosecond laser pulse, where α → ε phase transition
was not detected [12]

CONCLUSION

We developed a new EAM potential for iron, which
reproduces correctly not only mechanical response to
compression but also bcc-to-hcp and bcc-to-fcc phase
transitions. It also provides good description of molten
iron, including the surface tension and the melting
point which both are very closed to the experimental
values.

The above properties are crucial for predictive MD simulation of shock-wave loading associated with phase
transitions. The new potential was successfully used for calculation of shock Hugoniot for iron. We preformed moving-
window MD study of steady shock-wave structures propagating in [100] and [110] directions of prefect single crystal
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iron. It was found that the [100] oriented crystal exhibits fast α→ ε transition completing for few picoseconds within
a shock front because the very efficient shuffle mechanism is realized.

However, in other crystallographic directions the shuffle mechanism is not activated, which leads to shock-
induced formation of long-living metastable mixture of small nanometer-sized grains of hcp, bcc, and fcc phases
within a plastic shock front. Because such phase mixture slowly relaxes in after-shock flow we suggest that the com-
plete transition to hcp solid will require a few hundred picoseconds, which exceeds much the available after-shock
time in the used moving-window box of 400 nm in length.
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